

## **Limites**



## **Propriedades Elementares**

- Para  $\lim_{x \to a} f(x) = L$  e  $\lim_{x \to a} g(x) = M$  sendo L, M e k constantes reais, temos:
  - **Propriedade 1:**  $\lim_{x\to a} k = k$ ;
  - **Propriedade 2:**  $\lim_{x\to a} [k \cdot f(x)] = k \cdot \lim_{x\to a} f(x) = k \cdot L;$
  - **Propriedade 3:**  $\lim_{x\to a} [f(x)\pm g(x)] = \lim_{x\to a} f(x)\pm \lim_{x\to a} g(x) = L\pm M$ ;
  - **Propriedade 4:**  $\lim_{x\to a} [f(x)\cdot g(x)] = \lim_{x\to a} f(x)\cdot \lim_{x\to a} g(x) = L\cdot M$ ;
  - **Propriedade 5:**  $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} = \frac{L}{M}$ , desde que  $\lim_{x \to a} g(x) = M \neq 0$ ;
  - **Propriedade 6:**  $\lim_{x \to a} [f(x)]^n = \left[\lim_{x \to a} f(x)\right]^n = L^n \text{ se } n \in \mathbb{N}^* = \{1, 2, 3, ...\};$
  - **Propriedade 7:**  $\lim_{x\to a} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x\to a} f(x)} = \sqrt[n]{L}$ , se  $\lim_{x\to a} f(x) = L > 0$  e n é inteiro ou, se

 $\lim_{x \to a} f(x) = L \le 0 \text{ e } n \text{ \'e inteiro positivo \'impar};$ 

- **Propriedade 8:**  $\lim_{x \to a} b^{f(x)} = b^{\lim_{x \to a} f(x)} = b^L$ , se  $0 < b \ne 1$ ;
- **Propriedade 9:**  $\lim_{x \to a} \log_b [f(x)] = \log_b \left[ \lim_{x \to a} f(x) \right] = \log_b L$ , se  $\lim_{x \to a} f(x) = L > 0$  e  $0 < b \ne 1$ ;
- **Propriedade 10:**  $\lim_{x\to a} \operatorname{sen}[f(x)] = \operatorname{sen}\left[\lim_{x\to a} f(x)\right] = \operatorname{sen} L;$
- **Propriedade 11:**  $\lim_{x\to a} \cos[f(x)] = \cos\left[\lim_{x\to a} f(x)\right] = \cos L$ .

#### Substituição Direta em Limites

**Propriedade 12:** Seja f uma função polinomial ou racional com a em seu domínio, então  $\lim_{x\to a} f(x) = f(a).$ 

Tal propriedade indica que quando x tende a um ponto do domínio de uma função polinomial (ou racional) o limite dessa função é o valor da função no ponto.

Na próxima página você tem exemplos das propriedades!!!

Fundamentos Limites Derivadas Integrais

www.calculotop.com.br



# **Limites**



# **Exemplos das Propriedades Elementares**

**Exemplo 1:**  $\lim_{x\to 4} 7 = 7$  (Propriedade 1).

**Exemplo 2:** Considere 
$$\lim_{x\to 2} x^3 = 8$$
 e o número 4, então  $\lim_{x\to 2} (4x^3) = 4 \cdot \lim_{x\to 2} x^3 = 4 \cdot 8 = 32$ . (Propriedade 2)

**Exemplo 3:** Considere 
$$\lim_{x\to 2} x^3 = 8$$
 e  $\lim_{x\to 2} 5x = 10$ , então  $\lim_{x\to 2} (x^3 + 5x) = 8 + 10 = 18$ . (Propriedade 3)

**Exemplo 4:** Considere 
$$\lim_{x\to 2} x^3 = 8$$
 e  $\lim_{x\to 2} 3^x = 9$ , então  $\lim_{x\to 2} \left(x^3 \cdot 3^x\right) = 8 \cdot 9 = 72$ . (Propriedade 4)

**Exemplo 5:** Considere 
$$\lim_{x\to 2} x^3 = 8$$
 e  $\lim_{x\to 2} 3^x = 9$ , então  $\lim_{x\to 2} \left(\frac{x^3}{3^x}\right) = \frac{8}{9}$ . (Propriedade 5)

**Exemplo 6:** Considere 
$$\lim_{x\to 2} x^3 = 8$$
 então  $\lim_{x\to 2} \left[ \left( x^3 \right)^4 \right] = 8^4 = 4.096$ . (Propriedade 6)

**Exemplo 7:** Considere 
$$\lim_{x\to 2} x^3 = 8$$
, então  $\lim_{x\to 2} \sqrt[7]{x^3} = \sqrt[7]{8}$ . (Propriedade 7)

**Exemplo 8:** Considere 
$$\lim_{x\to 2} x^3 = 8$$
, então  $\lim_{x\to 2} 4^{x^3} = 4^8 = 65.536$ . (Propriedade 8)

**Exemplo 9:** Considere 
$$\lim_{x\to 2} x^3 = 8$$
, então  $\lim_{x\to 2} \ln(x^3) = \ln 8$ . (Propriedade 9)

**Exemplo 10:** Considere 
$$\lim_{x\to 2} x^3 = 8$$
, então  $\lim_{x\to 2} \operatorname{sen}(x^3) = \operatorname{sen} 8$ . (Propriedade 10)

**Exemplo 11:** Considere 
$$\lim_{x\to 2} x^3 = 8$$
, então  $\lim_{x\to 2} \cos(x^3) = \cos 8$ . (Propriedade 11)

#### Substituição Direta em Limites

(Propriedade 12)

**Exemplo 12:** Para calcular 
$$\lim_{x\to 3} (x^2 + x - 5)$$
 basta fazer  $\lim_{x\to 3} (x^2 + x - 5) = 3^2 + 3 - 5 = 7$ .

**Exemplo 13:** Para calcular 
$$\lim_{x\to 1} \frac{x^3 + x}{x + 2}$$
 basta fazer  $\lim_{x\to 1} \frac{x^3 + x}{x + 2} = \frac{1^3 + 1}{1 + 2} = \frac{2}{3}$ .

Fundamentos Limites Derivadas Integrais

www.calculotop.com.br